Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-Cyanoanilinium iodide monohydrate

Jing Dai* and Xin-Yuan Chen

Ordered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: fudavid88@yahoo.com.cn

Received 13 November 2010; accepted 19 November 2010
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.029 ; w R$ factor $=0.061$; data-to-parameter ratio $=20.8$.

In the crystal structure of the title compound, $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}^{+} \cdot \mathrm{I}^{-}$-$\mathrm{H}_{2} \mathrm{O},\left[\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}^{+}\right]_{n}$ chains extending along the a-axis direction are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. The cations are further connected to the anions by $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds, leading to the formation of a sheet parallel to the $a c$ plane. $\pi-\pi$ interactions [centroid-centroid distance $=3.8378(7) \AA]$ link the sheets into a threedimensional network.

Related literature

For related structures, see: Oueslati et al. (2005); Messai et al. (2009). For applications of salts of amides as phase-transition dielectric materials, see: Fu et al. (2007, 2008, 2009); Fu \& Xiong (2008).

Experimental

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{I}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=264.06$
$a=8.0436(16) \AA$
Monoclinic, $P 2_{1} / c$
$b=16.603$ (3) \AA
$c=7.6746(15) \AA$
$\beta=115.39(3)^{\circ}$
$\mu=3.41 \mathrm{~mm}^{-1}$
$V=925.9(3) \mathrm{A}^{3}$
$Z=4$
Mo $K \alpha$ radiation

Data collection
Rigaku Mercury2 diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)
$T_{\min }=0.910, T_{\max }=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029 \quad 102$ parameters
$w R\left(F^{2}\right)=0.061 \quad \mathrm{H}$-atom parameters constrained
$S=1.21$
2117 reflections
$T=298 \mathrm{~K}$
$0.10 \times 0.03 \times 0.03 \mathrm{~mm}$

9455 measured reflections 2117 independent reflections 1978 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.041$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{~N}^{\mathrm{i}}$	0.89	2.11	$2.991(4)$	169
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1 W^{\mathrm{ii}}$	0.89	1.98	$2.850(4)$	164
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{I} 1^{\mathrm{iii}}$	0.89	2.60	$3.487(3)$	171
$\mathrm{O}^{\mathrm{O}} W-\mathrm{H} 1 W B \cdots \mathrm{I}^{\text {ii }}$	0.93	2.75	$3.635(3)$	159
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{I} 1$	0.96	2.65	$3.576(3)$	162

Symmetry codes: (i) $x+1, y, z+1$; (ii) $-x+1,-y+1,-z+1$; (iii) $x+1, y, z$.
Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by a start-up grant from where?.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2061).

References

Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. \& Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.
Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. \& Huang, S.-P.-D. (2007). J. Am. Chem. Soc. 129, 5346-5347.
Fu, D.-W. \& Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.
Fu, D.-W., Zhang, W. \& Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464. Messai, A., Direm, A., Benali-Cherif, N., Luneau, D. \& Jeanneau, E. (2009). Acta Cryst. E65, o460.
Oueslati, A., Kefi, R., Akriche, S. \& Nasr, C. B. (2005). Z. Kristallogr. New Cryst. Struct. 220, 365-366.
Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

3-Cyanoanilinium iodide monohydrate

J. Dai and X.-Y. Chen

Comment

Salts of amides attracted much attention as phase transition dielectric materials for applications in micro-electronics and memory storage (Fu et al. 2007; Fu \& Xiong 2008; Fu et al. 2008; Fu et al. 2009). With the purpose of obtaining phase transition crystals of 3-aminobenzonitrile salts, its interaction with various acids has been studied and we have elaborated a series of new materials with this organic molecule. In this paper, we describe the crystal structure of the title compound, 3-cyanoanilinium iodine monohydrate.

The asymmetric unit is composed of a iodine anion, a 3-cyanoanilinium cation and a water molecule (Fig.1). The geometric parameters of the title compound agree well with reported similar structures (Oueslati et al., 2005; Messai et al., 2009). The cation is almost planar (r.m.s. deviation $0.0097 \AA$ for best plane through all non- H atoms of cation). Moreover, the $\mathrm{C}-\mathrm{NH}_{3}(1.459(2) \AA)$ and $\mathrm{C} \equiv \mathrm{N}(1.132(3) \AA)$ distances in the 3-cyanoanilinium cation are almost equal with respect to the $\mathrm{C}-\mathrm{NH}_{3}(1.457(4) \AA)$ and $\mathrm{C} \equiv \mathrm{N}(1.137(4) \AA$) observed in the crystal structure of 2-cyanoanilinium chloride (Oueslati et al., 2005).

The cations are surrounded by the anions and water molecules via hydrogen bonds which play an important role in stabilizing the crystal structure. In the crystal structure, all the amine group H atoms are involved in $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N} — \mathrm{H} \cdots \mathrm{N}$ hydrogen bonds with $\mathrm{N} \cdots \mathrm{I}, \mathrm{N} \cdots \mathrm{O}$ and $\mathrm{N} \cdots \mathrm{N}$ distances of 3.487 (3) $\AA, 2.850$ (4) \AA and 2.991 (4) \AA. These hydrogen bonds link the ionic units into a two-dimensional graph-set motif parallel to the ac plane (Table 1, Fig. 2). Furthermore, $\pi-\pi$ interactions $\left[\mathrm{Cg}(1) \cdots \mathrm{Cg}(1)^{\mathrm{i}}=3.8378(7) \AA ; \mathrm{Cg}(1)\right.$ is centroid of ring $\mathrm{C} 2-\mathrm{C} 7$; symmetry operation: (i) $\left.x, 1 / 2-y, 1 / 2+z\right]$ link the sheets into a three-dimensional network (Fig.3).

Experimental

The commercial available 3-aminobenzonitrile ($3 \mathrm{mmol}, 324 \mathrm{mg}$) was dissolved in water/ $\mathrm{HI}(50: 1 \mathrm{v} / \mathrm{v}$) solution. The solvent was slowly evaporated in air affording colourless block-shaped crystals of the title compound suitable for X-ray analysis.

While permittivity measurements show that there is no phase transition within the temperature range (from 100 K to 400 $\mathrm{K})$, the permittivity is 6.8 at 1 MHz at room temperature.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with $\mathrm{C}-\mathrm{H}=0.93 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.2 \mathrm{Ueq}(\mathrm{C})$.
The $\mathrm{NH}_{3}{ }^{+} \mathrm{H}$ atoms were calculated geometrically and were refined using a riding model with $\mathrm{N}-\mathrm{H}=0.89 \AA$, with $U_{\text {iso }}(\mathrm{H})$ $=1.5 U_{\mathrm{eq}}(\mathrm{N})$. A rotating-group model was used for the $-\mathrm{NH}_{3}$ group. H atoms of water molecule were located in difference Fourier maps and freely refined. In the last stage of refinement they were treated as riding on the O atom, with $U_{\text {iso }}(\mathrm{H})$ $=1.5 U_{e q}(\mathrm{O})$.

supplementary materials

Figures

Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Fig. 2. The crystal packing of the title compound, showing the two-dimensional hydrogenbonded network parallel to the $a c$ plane. H atoms not involved in hydrogen bonding (dashed line) have been omitted for clarity.

Fig. 3. The crystal packing of the title compound showing the $\pi-\pi$ interactions linking the hy-drogen-bonded network into a three-dimensional network.

3-Cyanoanilinium iodide monohydrate

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{I}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=264.06$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=8.0436(16) \AA$
$b=16.603$ (3) \AA
$c=7.6746(15) \AA$
$\beta=115.39(3)^{\circ}$
$V=925.9(3) \AA^{3}$
$Z=4$
$F(000)=504$
$D_{\mathrm{x}}=1.894 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2117 reflections
$\theta=3.1-27.5^{\circ}$
$\mu=3.41 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, colorless
$0.10 \times 0.03 \times 0.03 \mathrm{~mm}$

Data collection

Rigaku Mercury2
diffractometer
Radiation source: fine-focus sealed tube graphite
Detector resolution: 13.6612 pixels mm^{-1}
CCD profile fitting scans
Absorption correction: multi-scan

2117 independent reflections
1978 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\max }=27.5^{\circ}, \theta_{\min }=3.1^{\circ}$
$h=-10 \rightarrow 10$
$k=-21 \rightarrow 21$
(CrystalClear; Rigaku, 2005)
$T_{\text {min }}=0.910, T_{\max }=1.000$

$$
l=-9 \rightarrow 9
$$

9455 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.061$
$S=1.21$
2117 reflections
102 parameters

0 restraints

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0103 P)^{2}+0.9565 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.72 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.89$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Primary atom site location: structure-invariant direct methods

Extinction coefficient: 0.0824 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
N1	$1.0275(3)$	$0.37559(16)$	$0.8592(4)$	$0.0332(6)$
H1A	0.9606	0.4146	0.8775	0.050^{*}
H1B	1.0861	0.3949	0.7927	0.050^{*}
H1C	1.1093	0.3575	0.9730	0.050^{*}
N2	$0.3209(4)$	$0.3013(2)$	$0.2122(4)$	$0.0483(8)$
C1	$0.4542(4)$	$0.2842(2)$	$0.3388(4)$	$0.0350(7)$
C2	$0.6270(4)$	$0.26503(19)$	$0.4998(4)$	$0.0288(6)$
C3	$0.6773(4)$	$0.18539(19)$	$0.5508(5)$	$0.0343(7)$
H3	0.5995	0.1436	0.4829	0.041^{*}
C4	$0.8443(4)$	$0.1692(2)$	$0.7037(5)$	$0.0365(7)$
H4	0.8788	0.1161	0.7394	0.044^{*}
C5	$0.9614(4)$	$0.23118(18)$	$0.8048(4)$	$0.0306(6)$
H5	1.0747	0.2200	0.9065	0.037^{*}

C6				
C7	$0.9070(4)$	$0.30971(17)$	$0.7520(4)$	$0.0257(6)$
H7	$0.7422(4)$	$0.32826(19)$	$0.6002(4)$	$0.0294(6)$
O1W	0.7085	0.3815	0.5653	0.035^{*}
H1WA	$0.2139(3)$	$0.49557(16)$	$0.1596(4)$	$0.0488(6)$
H1WB	0.2348	0.4707	0.2806	0.073^{*}
I1	0.3325	0.5071	0.1742	0.073^{*}
	$0.30166(3)$	$0.451061(14)$	$0.64728(3)$	$0.04440(13)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0275(13)$	$0.0362(14)$	$0.0302(13)$	$-0.0081(10)$	$0.0067(10)$	$-0.0028(11)$
N2	$0.0317(15)$	$0.060(2)$	$0.0379(15)$	$0.0013(13)$	$0.0001(13)$	$-0.0064(14)$
C1	$0.0271(15)$	$0.0425(18)$	$0.0300(16)$	$-0.0034(13)$	$0.0073(13)$	$-0.0073(13)$
C2	$0.0214(13)$	$0.0374(16)$	$0.0244(14)$	$-0.0004(12)$	$0.0068(11)$	$-0.0034(12)$
C3	$0.0298(15)$	$0.0344(16)$	$0.0380(16)$	$-0.0077(12)$	$0.0139(13)$	$-0.0100(13)$
C4	$0.0361(16)$	$0.0293(16)$	$0.0391(17)$	$0.0031(13)$	$0.0116(14)$	$0.0000(13)$
C5	$0.0244(14)$	$0.0367(16)$	$0.0277(14)$	$0.0035(12)$	$0.0083(12)$	$0.0028(12)$
C6	$0.0217(13)$	$0.0311(15)$	$0.0231(13)$	$-0.0054(11)$	$0.0086(11)$	$-0.0033(11)$
C7	$0.0258(14)$	$0.0307(15)$	$0.0278(14)$	$0.0013(11)$	$0.0079(11)$	$0.0014(11)$
O1W	$0.0377(13)$	$0.0442(14)$	$0.0516(15)$	$-0.0006(11)$	$0.0070(11)$	$-0.0055(11)$
I1	$0.03749(16)$	$0.04184(17)$	$0.05167(18)$	$0.00206(9)$	$0.01702(12)$	$0.01218(10)$

Geometric parameters (\AA, ${ }^{\circ}$)

N1-C6	1.459 (4)	C3-H3	0.9300
N1-H1A	0.8900	C4-C5	1.386 (4)
N1-H1B	0.8900	C4-H4	0.9300
N1-H1C	0.8900	C5-C6	1.380 (4)
N2-C1	1.132 (4)	C5-H5	0.9300
C1-C2	1.444 (4)	C6-C7	1.373 (4)
C2-C3	1.389 (4)	C7-H7	0.9300
C2-C7	1.394 (4)	O1W-H1WA	0.9626
C3-C4	1.380 (4)	O1W-H1WB	0.9316
C6-N1-H1A	109.5	C3-C4-C5	120.8 (3)
C6-N1-H1B	109.5	C3-C4-H4	119.6
H1A-N1-H1B	109.5	C5-C4-H4	119.6
C6-N1-H1C	109.5	C6-C5-C4	118.9 (3)
H1A-N1-H1C	109.5	C6-C5-H5	120.5
H1B-N1-H1C	109.5	C4-C5-H5	120.5
N2-C1-C2	178.0 (4)	C7-C6-C5	122.0 (3)
C3-C2-C7	121.1 (3)	C7-C6-N1	118.5 (3)
C3-C2-C1	120.5 (3)	C5-C6-N1	119.5 (3)
C7-C2-C1	118.3 (3)	C6-C7- C 2	118.1 (3)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	119.0 (3)	C6-C7-H7	120.9
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.5	C2-C7-H7	120.9
C2-C3-H3	120.5	H1WA-O1W-H1WB	103.1

sup-4

Hydrogen-bond geometry ($A,{ }^{\circ}$)

D - $\mathrm{H} \cdots \mathrm{A}$	D - H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{C} \cdots \mathrm{N} 2{ }^{\text {i }}$	0.89	2.11	2.991 (4)	169
N1—H1A \cdots O1W ${ }^{\text {ii }}$	0.89	1.98	2.850 (4)	164
N1—H1B \cdots I1 ${ }^{\text {iii }}$	0.89	2.60	3.487 (3)	171
O1W—H1WB \cdots I1 ${ }^{\text {ii }}$	0.93	2.75	3.635 (3)	159
O1W-H1WA \cdots I1	0.96	2.65	3.576 (3)	162

supplementary materials

Fig. 1

Fig. 2

supplementary materials

Fig. 3

